Abstract
This paper presents a new scheme of I/O scheduling on storage servers of distributed/parallel file systems, for yielding better I/O performance. To this end, we first analyze read/write requests in the I/O queue of storage server (we name them block I/Os), by using our proposed technique of horizontal partition. Then, all block requests are supposed to be divided into multiple groups, on the basis of their offsets. This is to say, all requests related to the same chunk file will be grouped together, and then be satisfied within the same time slot between opening and closing the target chunk file on the storage server. As a result, the time resulted by completing block I/O requests can be significantly decreased, because of less file operations on the corresponding chunk files at the low-level file systems of server machines. Furthermore, we introduce an algorithm to rate a priority for each group of block I/O requests, and then the storage server dispatches groups of I/Os by following the priority order. Consequently, the applications having higher I/O priorities, e.g. they have less I/O operations and small size of involved data, can finish at a earlier time. We implement a prototype of this server-side scheduling in the PARTE file system, to demonstrate the feasibility and applicability of the proposed scheme. Experimental results show that the newly proposed scheme can achieve better I/O bandwidth and less I/O time, compared with the strategy of First Come First Served, as well as other server-side I/O scheduling approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.