Abstract
A method that estimates the precision matrix of multiple variables in the extreme scope of “ultrahigh dimension” and “small sample-size” is proposed. Initially, a covariance column-wise screening method is provided in order to identify a small sub-group, which are significantly correlated, from thousands and even millions of variables. Then, a regularization of block-diagonal covariance structure of the thousands or millions of variables is imposed, in which only the covariances of variables in that small sub-group are retained and all others vanish. It is further proven that under some mild conditions the vital sub-group identified by the covariance column-wise screening method is consistent. A major advantage of the proposed method is its efficiency - it produces a reliable precision matrix estimator for thousands of variables within a few of seconds while the existing methods take at least several hours and even so still yield inaccurate estimators. Empirical data studies and numerical simulations show that the proposed precision matrix estimation greatly outperforms existing methods in the sense of taking much less computing time and resulting in much more accurate estimation when dealing with ultrahigh dimensional data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.