Abstract
Vesicle response to osmotic shock provides insight into membrane permeability, a highly relevant value for applications ranging from nanoreactor experimentation to drug delivery. The osmotic shock approach has been employed extensively to elucidate the properties of phospholipid vesicles (liposomes) and of varieties of polymer vesicles (polymersomes). This study seeks to compare the membrane response for two varieties of polymersomes, a comb-type siloxane surfactant, poly(dimethylsiloxane)-g-poly(ethylene oxide) (PDMS-g-PEO), and a diblock copolymer, polybutadiene-b-poly(ethylene oxide) (PBut-b-PEO). Despite similar molecular weights and the same hydrophilic block (PEO), the two copolymers possess different hydrophobic blocks (PBut and PDMS) and corresponding glass transition temperatures (-31 and -123 °C, respectively). Dramatic variations in membrane response are observed during exposure to osmotic pressure differences, and values for polymer membrane permeability to water are extracted. We propose an explanation for the observed phenomena based on the respective properties of the PBut-b-PEO and PDMS-g-PEO membranes in terms of cohesion, thickness, and fluidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.