Abstract

Track-etched poly(ethylene terephthalate) capillary pore membranes with a pore diameter of 690 nm were functionalized via photo-initiated “living” radical graft polymerization with block copolymers of acrylic acid and N-isopropylacrylamide. Preadsorbed xanthone was more efficient than benzophenone in order to achieve higher grafting efficiency and “living” character, including the option to reinitiate a grafted homopolymer to obtain grafted diblock copolymers. Characterizations were mainly done with water flux and dextran diffusion experiments at temperatures below and above the lower critical solution temperature (32°C) of poly(N-isopropylacrylamide) and pH values below and above the pKa value (4.5) of poly(acrylic acid). Block sequences and relative block lengths were identified to obtain stimuli-responsive membranes which have no measurable water flux and allow only low dextran diffusion rates at 25°C and pH 7 (“closed state”), and which reversibly open their pores by either increase of temperature or decrease of pH, or by the combination of both stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.