Abstract

AbstractNew micelle‐like organic supports for single site catalysts based on the self‐assembly of polystyrene‐b‐poly(4‐vinylbenzoic acid) block copolymers have been designed. These block copolymers were synthesized by sequential atom transfer radical polymerization (ATRP) of styrene and methyl 4‐vinylbenzoate, followed by hydrolysis. As evidenced by dynamic light scattering, self‐assembly in toluene that is a selective solvent of polystyrene, induced the formation of micelle‐like nanoparticles composed of a poly(4‐vinylbenzoic acid) core and a polystyrene corona. Further addition of trimethylaluminium (TMA) afforded in situ MAO‐like species by diffusion of TMA into the core of the micelles and its subsequent reaction with the benzoic acid groups. Such reactive micelles then served as nanoreactors, MAO‐like species being efficient activators of 2,6‐bis[1‐{(2,6‐diisopropylphenyl)imino}ethyl]pyridinyl iron toward ethylene polymerization. These new micelle‐like organic supports enabled the production of polyethylene beads with a spherical morphology and a high bulk density through homogeneous‐like catalysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 197–209, 2009

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call