Abstract

Chiral metal oxide nanostructures have received tremendous attention in nanotechnological applications owing to their intriguing chiroptical and magnetic properties. Current synthetic methods mostly rely on the use of amino acids or peptides as chiral inducers. Here, we report a general approach to fabricate chiral metal oxide nanostructures with tunable magneto-chiral effects, using block copolymer (BCP) inverse micelle and R/S-mandelic acid (MA). Diverse chiral metal oxide nanostructures are prepared by the selective incorporation of precursors within micellar cores followed by the oxidation process, exhibiting intense chiroptical properties with a g-factor up to 7.0 × 10-3 in the visible-NIR range for the Cr2O3 nanoparticle multilayer. The BCP inverse micelle is found to inhibit the racemization of MA, allowing MA to act as a chiral dopant that imparts chirality to nanostructures via hierarchical chirality transfer. Notably, for paramagnetic nanostructures, magneto-chiroptical modulation is realized by regulating the direction of the external magnetic field. This BCP-driven approach can be extended to the mass production of chiral nanostructures with tunable architectures and optical activities, which may provide insights into the development of chiroptical functional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.