Abstract

Here, we propose a simple approach for the design of highly porous multicomponent heterostructures by infiltration of block-co-polymer templates with inorganic precursors in swelling solvents followed by gas-phase sequential infiltration synthesis and thermal annealing. This approach can prepare conformal coatings, free-standing membranes, and powders consisting of uniformly sized metal or metal oxide nanoparticles (NPs) well dispersed in a porous oxide matrix. We employed this new, versatile synthetic concept to synthesize catalytically active heterostructures of uniformly dispersed ∼4.3 nm PdO nanoparticles accessible through three-dimensional pore networks of the alumina support. Importantly, such materials reveal high resistance against sintering at 800 °C, even at relatively high loadings of NPs (∼10 wt %). At the same time, such heterostructures enable high mass transport due to highly interconnected nature of the pores. The surface of synthesized nanoparticles in the porous matrix is highly accessible, which enables their good catalytic performance in methane and carbon monoxide oxidation. In addition, we demonstrate that this approach can be utilized to synthesize heterostructures consisting of different types of NPs on a highly porous support. Our results show that swelling-based infiltration provides a promising route toward the robust and scalable synthesis of multicomponent structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call