Abstract

Block bootstrap methods are applied to kernel-type density estimator and its derivatives for ψ-weakly dependent processes. Nonparametric density estimation is discussed via moving block bootstrap (MBB) and disjoint block bootstrap (DBB). Asymptotic validity is proved for MBB and DBB. A Monte-Carlo experiment compares confidence intervals based on MBB and DBB with an existing method based on normal approximation (NA) in terms of serial correlation, dynamic asymmetry, and conditional heteroscedasticity. The experiment shows that, in cases of substantial serial correlation, MBB and DBB perform better than NA and, in the other cases, MBB and DBB perform as good as NA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.