Abstract
This paper presents robust algorithms to deconvolve discrete noised signals and images. The idea behind the algorithms is to solve the convolution equation separately in different frequency bands. This is achieved by using spline wavelet packets. The solutions are derived as linear combinations of the wavelet packets that minimize some parameterized quadratic functionals. Parameters choice, which is performed automatically, determines the trade-off between the solution regularity and the initial data approximation. This technique, which id called Spline Harmonic Analysis, provides a unified computational scheme for the design of orthonormal spline wavelet packets, fast implementation of the algorithm and an explicit representation of the solutions. The presented algorithms provide stable solutions that accurately approximate the original objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.