Abstract
Analytic representation formulas and power series are developed describing the band structure inside non-magnetic periodic photonic three-dimensional crystals made from high dielectric contrast inclusions. Central to this approach is the identification and utilization of a resonance spectrum for quasiperiodic source-free modes. These modes are used to represent solution operators associated with electromagnetic and acoustic waves inside periodic high contrast media. A convergent power series for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.