Abstract
We find a new relation between the spectral problem for Bloch electrons on a two-dimensional honeycomb lattice in a uniform magnetic field and that for quantum geometry of a toric Calabi-Yau threefold. We show that a difference equation for the Bloch electron is identical to a quantum mirror curve of the Calabi-Yau threefold. As an application, we show that bandwidths of the electron spectra in the weak magnetic flux regime are systematically calculated by the topological string free energies at conifold singular points in the Nekrasov-Shatashvili limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.