Abstract

Age-related cataract (ARC) is the most common cause of severe visual impairment and blindness. The precise mechanisms of ARC are not completely understood, but it is well accepted that oxidative damage plays an important role in the disease pathogenesis. BLM, the key enzyme of the double-strand break repair (DSBR) pathway, is part of a family of DNA unwinding enzymes and has a crucial role in multiple steps of the DNA recombination, replication and repair processes. We have recently shown that BLM-rs1063147 is initially associated with nuclear ARC in a cross-section study. Therefore, we wanted to study the effects of BLM on ARC progression. In ARC patients, BLM transcription in lens capsules was decreased, so did the BLM protein, and after UVB irradiation, BLM mRNA and protein levels were increased in SRA01/04 cells. Upon silencing BLM in SRA01/04 cells and rat lens, cell vitality and apoptosis were altered, and the rat lens opacification was considerable. In conclusion, BLM can regulate cataract progression by influencing cell vitality and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call