Abstract
Lazy Initialization (LI) allows symbolic execution to effectively deal with heap-allocated data structures, thanks to a significant reduction in spurious and redundant symbolic structures. Bounded lazy initialization (BLI) improves on LI by taking advantage of precomputed relational bounds on the interpretation of class fields in order to reduce the number of spurious structures even further. In this paper we present bounded lazy initialization with SAT support (BLISS), a novel technique that refines the search for valid structures during the symbolic execution process. BLISS builds upon BLI, extending it with field bound refinement and satisfiability checks. Field bounds are refined while a symbolic structure is concretized, avoiding cases that, due to the concrete part of the heap and the field bounds, can be deemed redundant. Satisfiability checks on refined symbolic heaps allow us to prune these heaps as soon as they are identified as infeasible, i.e., as soon as it can be confirmed that they cannot be extended to any valid concrete heap. Compared to LI and BLI, BLISS reduces the time required by LI by up to four orders of magnitude for the most complex data structures. Moreover, the number of partially symbolic structures obtained by exploring program paths is reduced by BLISS by over 50 percent, with reductions of over 90 percent in some cases (compared to LI). BLISS uses less memory than LI and BLI, which enables the exploration of states unreachable by previous techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.