Abstract

High dynamic range (HDR) image, which has a powerful capacity to represent the wide dynamic range of real-world scenes, has been receiving attention from both academic and industrial communities. Although HDR imaging devices have become prevalent, the display devices for HDR images are still limited. To facilitate the visualization of HDR images in standard low dynamic range displays, many different tone mapping operators (TMOs) have been developed. To create a fair comparison of different TMOs, this paper proposes a BLInd QUality Evaluator to blindly predict the quality of Tone-Mapped Images (BLIQUE-TMI) without accessing the corresponding HDR versions. BLIQUE-TMI measures the quality of TMIs by considering the following aspects: 1) visual information; 2) local structure; and 3) naturalness. To be specific, quality-aware features related to the former two aspects are extracted in a local manner based on sparse representation, while quality-aware features related to the third aspect are derived based on global statistics modeling in both intensity and color domains. All the extracted local and global quality-aware features constitute a final feature vector. An emergent machine learning technique, i.e., extreme learning machine, is adopted to learn a quality predictor from feature space to quality space. The superiority of BLIQUE-TMI to several leading blind IQA metrics is well demonstrated on two benchmark databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.