Abstract

Unstable photoluminescence quantum yield is important because it indicates changes in the transition rates between excited states. We synthesized 4.5 monolayer CdSe core, Cd.33Zn.67S gradient shell semiconductor nanoplatelets. The platelets exhibit a variety of blinking behaviors. Change points in the brightness of the platelets were investigated with frequentist and Bayesian techniques. We measured blinking power law constants ranging from 1.4 to 2.3. The brightness levels of blinking quantum particles are important because they are an accessible, if ambiguous, way to study surface photochemistry. Using histograms and a clustering algorithm, we determined that the number of brightness levels in the nanoplatelets is in the range of two to nine, with the lower end of that range appearing most likely and common. We conclude that the thickness and ensemble spectra are insufficient information to understand the evolving coupling between the excited states of platelets. Models of the interplay of excited state localization and reaction kinetics that span 10−10m to 10−8m and 10−10s to 102s are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.