Abstract

Blinks are known to affect eye movements, e.g., saccades, slow and fast vergence, and saccade-vergence interaction, in two ways: by superimposition of blink-associated eye movements and changes of the central premotor activity in the brainstem. The goal of this study was to determine, for the first time, the effects of trigeminal evoked blinks on ongoing smooth pursuit eye movements which could be related to visual sensory or premotor neuronal changes. This was compared to the effect of a target disappearing for 100-300 ms duration during ongoing smooth pursuit (blank paradigm) in order to control for the visual sensory effects of a blink. Eye and blink movements were recorded in eight healthy subjects with the scleral search coil technique. Blink-associated eye movements during the first 50% of the blink duration were non-linearly superimposed on the smooth pursuit eye movements. Immediately after the blink-associated eye movements, the pursuit velocity slowly decreased by an average of 3.2+/-2.1 degrees /s. This decrease was not dependent on the stimulus direction. The pursuit velocity decrease caused by blinks which occluded the pupil more than 50% could be explained mostly by blanking the visual target. However, small blinks that did not occlude the pupil (<10% of lid closure) also decreased smooth pursuit velocity. Thus, this blink effect on pursuit velocity cannot be explained by blink-associated eye movements or by the blink having blanked the visual input. We propose that part of this effect might either be caused by incomplete visual suppression during blinks and/or a change in the activity of omnipause neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call