Abstract
It has been shown that unconscious visual function can survive lesions to optical radiations and/or primary visual cortex (V1), a phenomenon termed “blindsight”. Studies on animal models (cat and monkey) show that the age when the lesion occurs determines the extent of residual visual capacities. Much less is known about the functional and underlying neuronal repercussions of early cortical damage in humans. We measured sensitivity to several visual tasks in four children with congenital unilateral brain lesions that severely affected optic radiations, and in another group of three children with similar lesions, acquired in childhood. In two of the congenital patients, we measured blood oxygenation level dependent (BOLD) activity in response to stimulation of each visual field quadrants. Results show clear evidence of residual unconscious processing of position, orientation and motion of visual stimuli displayed in the scotoma of congenitally lesioned children, but not in the children with acquired lesions. The calcarine cortical BOLD responses were abnormally elicited by stimulation of the ipsilateral visual field and in the scotoma region, demonstrating a profound neuronal reorganization. In conclusion, our data suggest that congenital lesions can trigger massive reorganization of the visual system to alleviate functional effects of early brain insults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.