Abstract

The brain has no direct access to physical stimuli but only to the spiking activity evoked in sensory organs. It is unclear how the brain can learn representations of the stimuli based on those noisy, correlated responses alone. Here we show how to build an accurate distance map of responses solely from the structure of the population activity of retinal ganglion cells. We introduce the Temporal Restricted Boltzmann Machine to learn the spatiotemporal structure of the population activity and use this model to define a distance between spike trains. We show that this metric outperforms existing neural distances at discriminating pairs of stimuli that are barely distinguishable. The proposed method provides a generic and biologically plausible way to learn to associate similar stimuli based on their spiking responses, without any other knowledge of these stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.