Abstract
In the printed wiring board manufacturing sector, methods have been developed to improve the circuit packaging density. The multi-layer printed wiring board manufacturing process is receiving particular attention. In the current manufacture of these boards, the method frequently used is to laminate the core with insulating resin, namely a build-up process. Etching is generally used to form the holes connecting the circuits of these boards. However, a problem has emerged in that the strength of the substrate decreases due to the insulating resin part as the multi-layers are progressively formed. Thus, it becomes necessary to use FRP for the insulation layer part. Since it is very difficult to etch composites, lasers have been proposed for a new way to drill holes in such materials. By appropriate adjustment of the laser penetration energy, the holes are drilled only in the insulation part, and a technique is proposed to stop the holes using the copper foil forming the circuit. AFRP has been considered a suitable FRP for such laser processing. In the present study, attempts were made to experimentally produce multi-layer boards using AFRP and GFRP for the build-up insulation layer, and the characteristics of blind via holes drilling with a small power laser were investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.