Abstract

We consider the problem of recovering $n$ i.i.d samples from a zero mean multivariate Gaussian distribution with an unknown covariance matrix, from their modulo wrapped measurements, i.e., measurement where each coordinate is reduced modulo $\Delta$, for some $\Delta>0$. For this setup, which is motivated by quantization and analog-to-digital conversion, we develop a low-complexity iterative decoding algorithm. We show that if a benchmark informed decoder that knows the covariance matrix can recover each sample with small error probability, and $n$ is large enough, the performance of the proposed blind recovery algorithm closely follows that of the informed one. We complement the analysis with numeric results that show that the algorithm performs well even in non-asymptotic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.