Abstract

We consider the problem of demodulating and decoding multiuser information symbols in an uplink asynchronous coded code-division multiple-access (CDMA) system employing long (aperiodic) spreading sequences, in the presence of unknown multipath channels, out-cell multiple-access interference (OMAI), and narrow-band interference (NBI). A blind turbo multiuser receiver, consisting of a novel blind Bayesian multiuser detector and a bank of MAP decoders, is developed for such a system. The effect of OMAI and NBI is modeled as colored Gaussian noise with some unknown covariance matrix. The main contribution of this paper is to develop blind Bayesian multiuser detectors for long-code multipath CDMA systems under both white and colored Gaussian noise. Such detectors are based on the Bayesian inference of all unknown quantities. The Gibbs sampler, a Markov chain Monte Carlo procedure, is then used to calculate the Bayesian estimates of the unknowns. The blind Bayesian multiuser detector computes the a posteriori probabilities of the channel coded symbols, which are differentially encoded before being sent to the channel. Being soft-input soft-output in nature, the proposed blind Bayesian multiuser detectors and the MAP decoders can iteratively exchange the extrinsic information to successively refine the performance, leading to the so-called blind turbo multiuser receiver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.