Abstract

This paper addresses the problem of space-time block code (STBC) identification for multiple-antenna (MA) orthogonal frequency-division multiplexing (OFDM) systems operating over frequency-selective channels for the first time in literature. Previous investigations published on the topic of STBC identification were restricted to single-carrier systems operating over frequency-flat channels. OFDM systems make this topic more challenging to handle since the identifiers work in frequency-selective channels with little or no knowledge of the beginning of the OFDM blocks, OFDM parameters, and frequency-selective channel coefficients. We show that, by taking advantage of the space-time redundancy, STBC identification can be performed by exploiting the cross-correlation of the signals received from different antennas as a discriminating feature. Using this feature, we develop a binary hypothesis test for decision making. The proposed method does not require information about the channel coefficients, modulation format, noise power, or timing of the OFDM and STBC blocks. Moreover, it does not need accurate knowledge of either clock-timing information or OFDM parameters, including the number of sub-carriers and cyclic prefix length. Extensive simulation experiments have verified the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.