Abstract

Blind source separation (BSS) consists of processing a set of observed mixed signals to separate them into a set of unobservable original components. Various approaches have been employed to solve BSS problems using the strong assumption focusing on mutually uncorrelated (or orthogonal) source signals. However, in many real-life problems, signal orthogonality is not guaranteed. This paper introduces a new approach to BSS that can be applied to nonorthogonal signals. The orthogonality requirement is replaced by a partial orthogonality and a nonnegativity constraint which are well-suited for many real-world signals. An algebraic property is then exploited to express BSS problems in terms of constrained optimization. An efficient algorithm implementing the approach is reported and applied to examples from nuclear magnetic resonance spectroscopy. Résumé La séparation aveugle de sources consiste à traiter un ensemble de signaux en mélange pour en extraire les composantes inobservables d’origine. Diverses approches utilisent l’hypothèse très restrictive de non-corrélation mutuelle des signaux sources, c’est-a-dire d’orthogonalité. Cependant, dans nombreuses situations réelles, la validité de l’hypothèse n’est pas garantie. Cet article propose une approche originale de la séparation de sources applicable à des sources non-orthogonales. La condition de non-corrélation est remplacée par une hypothèse de positivité, adaptée à de nombreux problèmes réels. Une propriété algébrique permet de transposer le problème en termes d’optimisation sous contrainte. Un algorithme efficace mettant en œuvre cette approche est appliqué à la spectroscopie de résonance magnétique nucléaire.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.