Abstract

Introduction: The progress in the development of quantum computing has raised the problem of constructing post-quantum two-key cryptographic algorithms and protocols, i.e. crypto schemes resistant to attacks from quantum computers. Based on the hidden discrete logarithm problem, some practical post-quantum digital signature schemes have been developed. The next step could be the development of post-quantum blind signature protocols. Purpose: To develop blind signature protocols based on the computational difficulty of the hidden discrete logarithm problem. Method: The use of blinding factors introduced by the client during the blind signature protocol when the parameters necessary for the blind signature formation are passed to the signatory. Results: It has been proposed to use blinding multipliers of two different types: left-sided and right-sided ones. With them, you can develop blind signature protocols on the base of schemes with a verification equation defined in non-commutative algebraic structures. New blind signature protocols have been developed, based on the computational difficulty of the hidden discrete logarithm problem. As the algebraic carrier for the developed protocols, finite non-commutative associative algebras of two types are used: 1) those with a global two-sided unit, and 2) those with a large set of global left units. Practical relevance: The proposed protocols have a high performance and can be successfully implemented either in software or in hardware.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call