Abstract

In this paper, neural networks based on an adaptive nonlinear function suitable for both blind complex time domain signal separation and blind frequency domain signal deconvolution, are presented. This activation function, whose shape is modified during learning, is based on a couple of spline functions, one for the real and one for the imaginary part of the input. The shape control points are adaptively changed using gradient-based techniques. B-splines are used, because they allow to impose only simple constraints on the control parameters in order to ensure a monotonously increasing characteristic. This new adaptive function is then applied to the outputs of a one-layer neural network in order to separate complex signals from mixtures by maximizing the entropy of the function outputs. We derive a simple form of the adaptation algorithm and present some experimental results that demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.