Abstract

Next-generation multimedia networks are expected to provide systems and applications with top Quality of Experience (QoE) to users. To this end, robust quality evaluation metrics are critical. Unfortunately, most current research focuses only on modeling and evaluating mainly distortions across the pipeline of multimedia networks. While distortions are important, it is also as important to consider the effects of enhancement and other manipulations of multimedia content, especially images and videos. In contrast to most existing works dedicated to evaluating image/video quality in its traditional context, very few research efforts have been devoted to Image Quality Enhancement Assessment (IQEA) and more specifically, Contrast Enhancement Evaluation (CEE). Our contribution fills this gap by proposing a pairwise ranking scheme for estimating and evaluating the perceptual quality of image contrast change (contrast enhancement and/or contrast-distorted images) process. We propose a novel Deep Learning-based Blind Quality pairwise Ranking scheme for Contrast-Changed (Deep-BQRCC) images. This method provides an automatic pairwise ranking of a set of contrast-changed images. The proposed framework is based on using a pair of Convolutional Neural Networks (CNN) together with a saliency-based attention model and a color-difference visual map. Extensive experiments were conducted to validate the effectiveness of the proposed workflow through an ablation analysis. Different combinations of CNN models and pooling strategies were analyzed. The proposed Deep-BQRCC approach was evaluated over three dedicated publicly available datasets. The experimental results showed an increase in performance within a range of 3–10% compared to state-of-the-art IQEA measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call