Abstract
The adaptive block size processing method in different image areas makes block-matching and 3D-filtering (BM3D) have a very good image denoising effect. Based on these observation, in this paper, we improve BM3D in three aspects: adaptive noise variance estimation, domain transformation filtering and nonlinear filtering. First, we improve the noise-variance estimation method of principle component analysis using multilayer wavelet decomposition. Second, we propose compressive sensing based Gaussian sequence Hartley domain transform filtering to reduce noise. Finally, we perform edge-preserving smoothing on the preprocessed image using the guided filtering based on total variation. Experimental results show that the proposed denoising method can be competitive with many representative denoising methods on the evaluation criteria of PSNR. However, it is worth further research on the visual quality of denoised images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.