Abstract

The only useful prior knowledge in blind compressive sensing is that a signal is sparse in an unknown dictionary. Usually, general dictionaries cannot sparsify all images well. It simultaneously optimizes the dictionary and sparse coefficient in the reconstruction process and has been demonstrated to obtain same results as those compressive sensing techniques based on the known dictionary. In this paper, we propose a novel blind compressive sensing method combing sparse and low-rank regularizations to obtain competitive recovery results. We employ truncated Schatten-p norm and lq norm to approximate rank and norm. At last, we give an optimization strategy based on alternating direction method of multipliers to solve the recovery model. Experimental results prove that our approach could obtain the higher Peak Signal to Noise Ratio values than other competitive methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.