Abstract
Blind identification for channel codes are essential in adaptive modulation and coding (AMC) systems. Since Turbo codes are popular in AMC systems, it's necessary to identify its parameters. In this paper, we focus on the identification for Turbo codes from a closed-set. The proposed approach firstly identifies the first component code by accumulating Log-Likelihood Ratio (LLR) for syndrome a posteriori probability, then the interleaver and the other component code are identified by decoding based on zero insertion and LLR accumulation. This approach is robust to noise due to LLR. Moreover, it applies to both symmetric Turbo codes with two same component codes and asymmetric Turbo codes with two different component codes. Simulation results demonstrate that the proposed blind identification scheme is able to identify Turbo codes at signal-to-noise ratio (SNR) larger than 3.5dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.