Abstract

We address the problem of synthesizing blind channel identification and equalization methods for digital communications systems, aimed at counteracting the presence of cochannel or adjacent-channel interference. Owing to the presence of the interfering signal, the minimum mean-square error equalizer turns out to be linear periodically time-varying, which is implemented by resorting to its Fourier series representation. Moreover, by exploiting the cyclic conjugate second-order statistics of the channel output, we propose a new weighted subspace-based channel identification method, which is asymptotically immune to the presence of high-level interference. Computer simulation results confirm the effectiveness of the proposed identification/equalization technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.