Abstract
BackgroundThe growing interest in neuroimaging technologies generates a massive amount of biomedical data of high dimensionality. Tensor-based analysis of brain imaging data has been recognized as an effective analysis that exploits its inherent multi-way nature. In particular, the advantages of tensorial over matrix-based methods have previously been demonstrated in the context of functional magnetic resonance imaging (fMRI) source localization. However, such methods can also become ineffective in realistic challenging scenarios, involving, e.g., strong noise and/or significant overlap among the activated regions. Moreover, they commonly rely on the assumption of an underlying multilinear model generating the data. New methodThis paper aims at investigating the possible gains from exploiting the 4-dimensional nature of the brain images, through a higher-order tensorization of the fMRI signal, and the use of less restrictive generative models. In this context, the higher-order block term decomposition (BTD) and the PARAFAC2 tensor models are considered for the first time in fMRI blind source separation. A novel PARAFAC2-like extension of BTD (BTD2) is also proposed, aiming at combining the effectiveness of BTD in handling strong instances of noise and the potential of PARAFAC2 to cope with datasets that do not follow the strict multilinear assumption. Comparison with existing methodsThe methods were tested using both synthetic and real data and compared with state of the art methods. ConclusionsThe simulation results demonstrate the effectiveness of BTD and BTD2 for challenging scenarios (presence of noise, spatial overlap among activation regions and inter-subject variability in the haemodynamic response function (HRF)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.