Abstract
Integration of various technologies to an Internet of Things (IoT) framework share the common goals of a consistent and structured data format that can be applied to any device, given the vast application scope of IoT. Additional goals include minimizing channel traffic and system energy consumption. In this paper, we propose to dismiss the requirement of certain seemingly crucial identifier fields from packets arriving through various sensor nodes in an agricultural IoT deployment. The proposed approach reduces packet size, thereby reducing channel traffic and energy consumption, as well as retaining the capability of identifying these originating nodes. We propose a method of a blind agricultural IoT node and sensor identification, which can be sourced and operated from a master node as well as a remote server. Additionally, this scheme has the capability of detecting the radio link quality between the master and slave nodes in a rudimentary form, as well as identifying the sensor nodes. We successfully trained and tested various multilayer perceptron-based models for blind identification, in real-time, using our implemented agricultural IoT implementation. The effect of changes in learning rate and momentum of the optimizer on the accuracy of classification is also studied. The projected cumulative energy savings across the network architecture, of our scheme, in conjunction with TCP/IP header compression techniques, are substantial. For a 100 node deployment using a combination of the proposed blind identification reduced sampling strategies over regular IPv4-based TCP/IP connection, an estimated annual saving of ≈99% is projected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.