Abstract

This paper addresses the problem of blind digital modulation identification in time-selective multiple-input multiple-output channels. Our objective is to recognize modulation schemes in highly-mobile communication environments, for military or high-speed railway applications, without signal knowledge or Channel State Information at the receiver. The proposed identification process is based on Blind Source Separation (BSS) and feature classification. We introduce a sliding window technique for the BSS of a faded-mixture to overcome the effect of the high mobility. Then, to improve the recognition of modulation schemes, we adopt a specific multi Artificial-Neural-Network (ANN) classifier, where each ANN is trained to be used within a particular Signal-to-Noise Ratio range. The proposed identifier has a good probability for achieving correct identifications under high velocity for typical carrier frequency and bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.