Abstract
With the development of wireless technology, signals propagating in space are easy to mix, so blind detection of communication signals has become a very practical and challenging problem. In this paper, we propose a blind detection method for broadband signals based on a weighted bi-directional feature pyramid network (BiFPN). The method can quickly perform detection and automatic modulation identification (AMC) on time-domain aliased signals in broadband data. Firstly, the method performs a time-frequency analysis on the received signals and extracts the normalized time-frequency images and the corresponding labels by short-time Fourier transform (STFT). Secondly, we build a target detection model based on YOLOv5 for time-domain mixed signals in broadband data and learn the features of the time-frequency distribution image dataset of broadband signals, which achieves the purpose of training the model. The main improvements of the algorithm are as follows: (1) a weighted bi-directional feature pyramid network is used to achieve a simple and fast multi-scale feature fusion approach to improve the detection probability; (2) the Efficient-Intersection over Union (EIOU) loss function is introduced to achieve high accuracy signal detection in a low Signal-Noise Ratio (SNR) environment. Finally, the time-frequency images are detected by an improved deep network model to complete the blind detection of time-domain mixed signals. The simulation results show that the method can effectively detect the continuous and burst signals in the broadband communication signal data and identify their modulation types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.