Abstract

Recently, ambient backscatter that utilizes surrounding radio frequency (RF) signals for both power and communications, has attracted vast interest since it can free sensors and tags from batteries and has extensive applications in Internet of Things (IoT), Existing studies about ambient backscatter often assume single antenna for each tag. Actually, as we show in this paper, equipping tags with multiple antennas can enlarge communication distance, enhance detection performance, and thus be practically useful. One key challenge of using multiple-antenna tags is the signal detection at the reader because the tag may have limited power and can transmit few training symbols. Therefore, in this paper, we design a blind detector based on F-test for the reader to recover tag signals without any knowledge of RF signals power, noise variance and all channel state information (CSI). Furthermore, we derive the lower and upper bounds of detection probabilities, and its exact expression in a special case. The optimal antenna selection scheme is also proposed to maximize the detection probability. Finally, simulation results are provided to corroborate our theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.