Abstract
Synthetic time reversal (STR) is a technique for blind deconvolution in an unknown multipath environment that relies on generic features (rays or modes) of multipath sound propagation. This paper describes how ray-based STR signal estimates may be improved and how ray-based STR sound-channel impulse-response estimates may be exploited for approximate source localization in underwater environments. Findings are based on simulations and underwater experiments involving source-array ranges from 100 m to 1 km in 60 -m-deep water and chirp signals with a bandwidth of 1.5-4.0 kHz. Signal estimation performance is quantified by the correlation coefficient between the source-broadcast and the STR-estimated signals for a variable number N of array elements, 2 ≤ N ≤ 32, and a range of signal-to-noise ratio (SNR), -5 dB ≤ SNR ≤ 30 dB. At high SNR, STR-estimated signals are found to have cross-correlation coefficients of ∼90% with as few as four array elements, and similar performance may be achieved at a SNR of nearly 0 dB with 32 array elements. When the broadband STR-estimated impulse response is used for source localization via a simple ray-based backpropagation scheme, the results are less ambiguous than those obtained from conventional broadband matched field processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.