Abstract

Recurrence of small image patches across different scales of a natural image has been previously used for solving ill-posed problems (e.g. super- resolution from a single image). In this paper we show how this multi-scale property can also be used for “blind-deblurring”, namely, removal of an unknown blur from a blurry image. While patches repeat ‘as is’ across scales in a sharp natural image, this cross-scale recurrence significantly diminishes in blurry images. We exploit these deviations from ideal patch recurrence as a cue for recovering the underlying (unknown) blur kernel. More specifically, we look for the blur kernel k, such that if its effect is “undone” (if the blurry image is deconvolved with k), the patch similarity across scales of the image will be maximized. We report extensive experimental evaluations, which indicate that our approach compares favorably to state-of-the-art blind deblurring methods, and in particular, is more robust than them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.