Abstract

A new compressive-sensing (CS)-based electronic warfare (EW) receiver is designed to estimate the angle-Doppler of adversary targets whose waveforms are unknown. The proposed EW receiver uses a sparse Bayesian learning (SBL) framework, which is blind in the sense that the knowledge of the sparsity basis is not available. Furthermore, a pruning mechanism is proposed to reduce the computational cost and improve convergence speed of the blind-SBL. The convergence of the proposed method is analytically proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.