Abstract

This paper considers blind-channel estimation for multiple-input multiple-output (MIMO) systems with structured transmitter design. First, a structured transmit delay (STD) scheme is proposed for MIMO systems. Unlike existing transmit diversity approaches, in which different antennas transmit delayed, zero padded, or time-reversed versions of the same signal, in the proposed scheme, each antenna transmits an independent data stream, therefore promises higher data rate and more flexibility to transmitter design. Second, second-order statistics based blind-channel estimation algorithms are developed for MIMO systems with STD scheme. Channel identifiability is addressed for both correlation-based and subspace-based approaches. The proposed approaches involve no pre-equalization, have no limitations on channel zero locations, and do not rely on nonconstant modulus precoding. Third, when channel coding is employed, estimation accuracy can be further enhanced through ldquopostprocessingrdquo, in which channel estimation is refined by taking the tentative decisions from the channel decoder as pseudo-training symbols. Simulation examples are provided to demonstrate the robustness and effectiveness of the proposed approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.