Abstract

In recent years, blind image quality assessment in the field of 2D image/video has gained the popularity, but its applications in 3D image/video are to be generalized. In this paper, we propose an effective blind metric evaluating stereo images via deep belief network (DBN). This method is based on wavelet transform with both 2D features from monocular images respectively as image content description and 3D features from a novel depth perception map (DPM) as depth perception description. In particular, the DPM is introduced to quantify longitudinal depth information to align with human stereo visual perception. More specifically, the 2D features are local histogram of oriented gradient (HoG) features from high frequency wavelet coefficients and global statistical features including magnitude, variance and entropy. Meanwhile, the global statistical features from the DPM are characterized as 3D features. Subsequently, considering binocular characteristics, an effective binocular weight model based on multiscale energy estimation of the left and right images is adopted to obtain the content quality. In the training and testing stages, three DBN models for the three types features separately are used to get the final score. Experimental results demonstrate that the proposed stereo image quality evaluation model has high superiority over existing methods and achieve higher consistency with subjective quality assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.