Abstract

Aiming at the blind angle in detecting weak signals of the same frequency by Duffing oscillator, a novel method of dephasing for the driving signals is proposed to eliminate the blind angle. According to the characteristic of weak signals, expression of blind angle is analyzed, and then the range of blind angle is found out, which corresponds to the amplitude of a new driven signal synthesized from the original driven signals and the unknown one. By making the original driven signal phase shift a degree of π, detection for the same frequency signal can be realized when the synthesized signal is located in the blind angle region, whose feasibility is proven by an experiment that it remains in chaotic status in the case of blind angle but becomes a great period status after the original driven signal's phase is dephased by π. To overcome the drawbacks of qualitative analysis and distinguish effectively different status in signal detection course, a detection statistics based on likelihood-Halmiton system is constructed. On the basis of it, a diagram of detection for any frequency signal is drawn. The key point is to make it as an unknown signal's frequency range where there are two adjacent frequency values whose corresponding detection statistics both located in the range of intermittent chaotic status, while one of them is just corresponding to the maximum value of the detection statistics. By simulations of different circumstances, detection statistics for numerical ranges of chaos, intermittent chaos, and great period is summarized. Furthermore, detection for any frequency signal may be realized by use of the numerical range. It is shown that the proposed method could not only provide quantitative judgment for the system status, but improve the signal detection performance. Also, it could be combined well with the traditional oscillator array method or adaptive step intermittent chaotic oscillator method, which further can improve some existing signal detection methods with Duffing oscillator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.