Abstract

In this paper, the blind subspace channel estimation using the block matrix scheme is proposed for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Based on the Toeplitz structure, the block matrix scheme collects a group of the received OFDM symbols into a vector, and then partitions it into a set of equivalent symbols. The number of equivalent symbols is about N times of OFDM symbols, where N is the size of FFT operation. With those equivalent symbols, the proposed blind subspace channel estimation can converge within a small amount of OFDM symbols. The identifiability of the proposed channel estimation is examined that the channel matrix is determined up to an ambiguity matrix. Besides, the semi-blind channel estimation is also investigated by combining few pilot sequences with the subspace method. Simulation results show that the proposed channel estimators perform very well even in a time-varying scenario. Especially the semi-blind methods achieve almost the same BERs as those by true channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.