Abstract
This work proposes a blind adaptive reduced-rank scheme and constrained constant-modulus (CCM) adaptive algorithms for interference suppression in wireless communications systems. The proposed scheme and algorithms are based on a two-stage processing framework that consists of a transformation matrix that performs dimensionality reduction followed by a reduced-rank estimator. The complex structure of the transformation matrix of existing methods motivates the development of a blind adaptive reduced-rank constrained (BARC) scheme along with a low-complexity reduced-rank decomposition. The proposed BARC scheme and a reduced-rank decomposition based on the concept of joint interpolation, switched decimation and reduced-rank estimation subject to a set of constraints are then detailed. The proposed set of constraints ensures that the multipath components of the channel are combined prior to dimensionality reduction. We develop low-complexity joint interpolation and decimation techniques, stochastic gradient, and recursive least squares reduced-rank estimation algorithms. A model-order selection algorithm for adjusting the length of the estimators is devised along with techniques for determining the required number of switching branches to attain a predefined performance. An analysis of the convergence properties and issues of the proposed optimization and algorithms is carried out, and the key features of the optimization problem are discussed. We consider the application of the proposed algorithms to interference suppression in DS-CDMA systems. The results show that the proposed algorithms outperform the best known reduced-rank schemes, while requiring lower complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.