Abstract

It has been shown that the performance of power line communication (PLC) systems can be severely limited by non-Gaussian and, in particular, impulsive interference from a variety of sources. The non-Gaussian nature of this interference provides an opportunity for its effective mitigation by nonlinear filtering. In this paper, we introduce blind adaptive analog nonlinear filters, referred to as Adaptive Nonlinear Differential Limiters (ANDLs), that are characterized by several methodological distinctions from the existing digital solutions. When ANDLs are incorporated into a communications receiver, these methodological differences can translate into significant practical advantages, improving the receiver performance in the presence of non-Gaussian interference. A Nonlinear Differential Limiter (NDL) is obtained from a linear analog filter by introducing an appropriately chosen feedback-based nonlinearity into the response of the filter, and the degree of nonlinearity is controlled by a single parameter. ANDLs are similarly controlled by a single parameter, and are suitable for improving quality of non-stationary signals under time-varying noise conditions. ANDLs are designed to be fully compatible with existing linear devices and systems (i.e., ANDLs' behavior is linear in the absence of impulsive interference), and to be used as an enhancement, or as a simple low-cost alternative, to the state-of-art interference mitigation methods. We provide an introduction to the NDLs and illustrate their potential use for noise mitigation in PLC systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.