Abstract

The zinc-finger transcriptional repressor Blimp1 (Prdm1) controls gene expression patterns during differentiation of B lymphocytes and regulates epigenetic changes required for specification of primordial germ cells. Blimp1 is dynamically expressed at diverse tissue sites in the developing mouse embryo, but its functional role remains unknown because Blimp1 mutant embryos arrest at E10.5 due to placental insufficiency. To explore Blimp1 activities at later stages in the embryo proper, here we used a conditional inactivation strategy. A Blimp1-Cre transgenic strain was also exploited to generate a fate map of Blimp1-expressing cells. Blimp1 plays essential roles in multipotent progenitor cell populations in the posterior forelimb, caudal pharyngeal arches, secondary heart field and sensory vibrissae and maintains key signalling centres at these diverse tissues sites. Interestingly, embryos carrying a hypomorphic Blimp1gfp reporter allele survive to late gestation and exhibit similar, but less severe developmental abnormalities, whereas transheterozygous Blimp1(gfp/-) embryos with further reduced expression levels, display exacerbated defects. Collectively, the present experiments demonstrate that Blimp1 requirements in diverse cell types are exquisitely dose dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.