Abstract

Bleomycin treatment of primary chick skin fibroblasts and chick lung fibroblasts resulted in a selective dose-dependent increase of cell layer procollagen synthesis. Solid support hybridization of total cellular RNA to 32P-labeled pro-alpha 1(I) and pro-alpha 2(I) cDNAs did not indicate an increase of total cellular procollagen type I mRNAs in bleomycin-treated cells. However, bleomycin treatment of chick skin fibroblasts causes a redistribution of procollagen type I mRNAs within the nuclear, cytoplasmic, and polysomal subcellular fractions. Both the nuclear and cytoplasmic procollagen type I mRNAs are significantly decreased in concentration after bleomycin administration. In contrast, the polysomal procollagen type I mRNAs are significantly increased in both chick skin and lung fibroblasts treated with bleomycin. Administration of dexamethasone to bleomycin-treated fibroblasts resulted in a reversal of the bleomycin-induced increase in cell layer procollagen synthesis. The increased amounts of polysomal procollagen type I mRNAs in bleomycin-treated cells were also reduced by subsequent administration of dexamethasone. These data indicate that bleomycin treatment of chick skin and chick lung fibroblasts results in a specific increase in procollagen synthesis in the cell layer which is mediated by elevated levels of polysomal type I procollagen mRNAs via a repartitioning of these mRNAs within the fibroblast. Furthermore, dexamethasone reverses the bleomycin-induced elevations of both cell layer procollagen synthesis and polysomal type I procollagen mRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.