Abstract

The importance of HER2/HER3 signaling in decreasing the effects of lung injury was recently demonstrated. Transgenic mice unable to signal through HER2/HER3 had significantly less bleomycin-induced pulmonary fibrosis and showed a survival benefit. Based on these data, we hypothesized that pharmacological blockade of HER2/HER3 in vivo in wild-type mice would have the same beneficial effects. We tested this hypothesis in a bleomycin lung injury model using 2C4, a monoclonal antibody directed against HER2 that blocks HER2/HER3 signaling. The administration of 2C4 before injury decreased the effects of bleomycin at days 15 and 21 after injury. HER2/HER3 blockade resulted in less collagen deposition (362.8 +/- 37.9 compared with 610.5 +/- 27.1 microg/mg; P = 0.03) and less lung morphological changes (injury score of 1.99 +/- 1.55 vs. 3.90 +/- 0.76; P < 0.04). In addition, HER2/HER3 blockade resulted in a significant survival advantage with 50% vs. 25% survival at 30 days (P = 0.04). These results confirm that HER2 signaling can be pharmacologically targeted to reduce lung fibrosis and remodeling after injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call