Abstract

Blend samples of cardanol-based epoxidized novolac resin and different weight percentages of carboxyl-terminated butadiene acrylonitrile (CTBN) were developed and cured with stoichiometric amounts of aliphatic amine. The formation of various products during the curing of blend samples has been studied by Fourier-transform infrared spectroscopy. The dynamic differential scanning calorimeter scans showed that the pure epoxies and their blend samples with CTBN cured in the temperature range of 100–150°C. The blend sample containing 15 wt% CTBN showed the least cure time (at 120°C) among all other blend samples. Upon evaluation, it was found that blend samples exhibit better properties compared to pure epoxy resin in terms of increase in impact strength and elongation-at-break of the casting and gloss, scratch hardness, adhesion, and flexibility of the film. The improvement in these properties indicates that the rubber modified resin would be more durable than the epoxy based on cardanol. Chemical and morphological properties of the formulated resins were also determined. The thermal stability of the blend samples containing 15 wt% CTBN in epoxy resin was the highest among all other prepared systems. The blend morphology, studied by scanning electron microscope, showed the presence of precipitated discrete rubber particles, which dispersed throughout the epoxy matrix—i.e., they revealed the presence of two-phase morphological features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call