Abstract

AbstractBlend films were prepared from hydrophobic poly(L‐lactide) (PLLA) and hydrophilic poly(vinyl alcohol) (PVA) with different PLLA contents [XPLLA (w/w) = PLLA/(PVA + PLLA)] by solution casting and melt quenching. Their morphology, swelling behavior, and surface and bulk properties were investigated. Polarizing optical microscopy, scanning electron microscopy, differential scanning calorimetry, X‐ray diffractometry, and tensile testing revealed that PLLA and PVA were phase separated in these blend films and the PLLA‐rich and PVA‐rich phases both formed a continuous domain in the blend film of XPLLA = 0.5. The water absorption of the blend films was higher for the blend films of low XPLLA values when compared at the same immersion time, and it was larger than expected from those of nonblended PLLA and PVA films. The dynamic contact angles of the blend films were linearly increased with an increase in XPLLA. The tensile strength and Young's modulus of the dry blend films decreased with a rise in XPLLA, but this dependence was reversed because of the large decreases in tensile strength and Young's modulus for the blend films having high XPLLA values after immersion in water. The elongation at break was higher for the wet blend film than for the dry blend film when compared at the same XPLLA and that of the dry and wet blend films decreased with an increase in XPLLA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2151–2160, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.