Abstract
AbstractThe phase behavior of blends of various polyacrylate homopolymers and two commercial ethyl acrylate (EA) and n‐butyl acrylate (nBA) copolymers with polyepichlorohydrin (PECH), poly(ethylene oxide) (PEO), and a copolymer of epichlorohydrin and ethylene oxide [P(ECH/EO)] was examined using differential scanning calorimetry and optical indications of phase separation on heating, i.e., lower critical solution temperature (LCST) behavior. Poly(methylacrylate) (PMA) was shown to be miscible with PECH, PEO, and P(ECH/EO) while only PECH was found to be miscible with the higher polyacrylates: poly(ethyl acrylate), EA copolymer, poly(n‐propyl acrylate), and nBA copolymer. However, even PECH was found to be only partially miscible with poly(n‐butyl acrylate). In general, glass transitions observed by DSC for blends were not as broad as those found in corresponding polymethacrylate blends. All mixtures showed LCST behavior, and, based on this and excess volume measurements, to the extent possible, qualitative conclusions were made concerning the relative strength of the interactions among the various blend pairs. For PECH it appears that the interaction with polyacrylates decreases with increasing size of the alkyl group. The commercial copolymers seem to interact more exothermically with PECH than the corresponding homopolymers. The interaction with PMA is apparently larger for PECH than for PEO or for P(ECH/EO). Interactions for the latter two are about the same. The apparently exothermic interactions between ECH and EO units are not sufficiently strong to preclude miscibility of P(ECH/EO) with PMA. As for the polymethacrylates, it is clear that the chlorine moeity of PECH is needed for miscibility with higher polyacrylates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.